

Short Course for Northern Star Resources

YILGARN REGOLITH AND LANDSCAPE

Mehrooz F Aspandiar

Department of Applied Geology

Western Australian School of Mines

The Yilgarn Craton surface regolith

Image: Churhward & Anand, 2000

Regolith-landforms: Variable Regolith

Relict - Erosional - Depositional Scheme

- R lateritic gravel and duricrust dominated terrane
- E Saprolite, shallow soil and bedrock dominated terrane
- D Sediment dominated terrane

Remote Sensing & Regolith-landforms

Regolith-landforms of Northern Yilgarn

Main Phanerozoic Sediment relationships – Transported regolith

Stratigraphy of transported regolith in the Yilgarn

Lithology Age		Regolith Unit	Description Inter	preted depositional environment
Pleistocene		Hardpan	Sandy clay to clay sand with Fe gravel	Aeolian, fluvial, colluvial
Pliocene		Nodular ferricrete	Sandy clay with clay spherites	Overbank deposits
Early Eocene to Mid Miocene	· · ·	Fe gravel + clay	Granule to pebble, hematite + maghemite	Fluvial, colluvial
		Megamottled clay	White to cream clay with quartz, kaolinite, lignite	Overbank – shallow wetland
		Fe pisolitic clay	Grey clay with kaolinite, smectite	
		Gravel + sand	Fe gravel & sand, vein quartz	Fluvial channel
Permian		Mottled mudstone Sandstone	Mudstone to sandstone with conglomerate base	Glacial outflow
Archean	1 1 1	Saprolite	J	

Weathering history and landscape evolution - 1

Late Permian to Cretaceous – extension weathering with stable landsurface conditions

Late Cretaceous to Eocene – drop in sea-levels (base level change) caused inset valleys to develop in the landscape with erosion

Weathering history and landscape evolution - 2

Mid Eocene - Miocene filling of inset valleys due higher sea-levels

Mid-Miocene -stable conditions favouring weathering

Late Miocene –to current – local erosion and sedimentation and onset of aridity – drop in water tables

Yilgarn Inset valley paleochannel fills

Salt lakes

Paleodrainage

Trunk inset valley fill

Trunk inset valley fill (inferred)

Yilgarn Inset Valley Paleochannels - Magnetics

RTP – southeast of Laverton

1VD – 30 km southeast of Laverton

Paleochannel sediments that have maghemite bearing pisolites show up on magnetic survey images – distributary channel form

Paleochannels (Inset-valley fills)

Images: Ravi Anand

Inset valley paleochannel fill stratigraphy

Late Cenozoic sediments & regolith

Late Cenozoic sediments & regolith

Pleistocene sediments - hardpan

Regolith-Landform relationships Erosional rises/low hills

Regolith-Landform relationships Erosional - Breakaways

Regolith-landform relationships Relief Inversion in landscapes

Profile modifications across the Yilgarn-Onset of aridity

Profiles have mineralogical & geochemical characteristics of present climate superimposed on those from previous one

			•	
Н	III	m	10	Y
	u			4

Iron oxides Acid Ferruginous duricrust, ferricrete

Silica Acid Pedogenic silcrete

Aluminosilicates Acid-nuetral Hardpan

Silica Acid-neutral Hardpan, groundwater silcrete

Carbonates, Alkaline Calcrete, gypcrete

Halides, sulfates Alkaline Evaporites in playas, soils

Arid

Lowering of water-table

Leaching of vadose zone under oxidizing & possibly saline conditions.

Dehydration of hardening of phases

Types of regolith minerals

Phyllosilicates or Clay Minerals (layer silicates)

Smectites, kaolinite, illite, vermiculite & interstratified varieties of these

Framework Silicates – opal A & opal-CT, quartz

Oxides & hydroxides of Fe, Mn, Al & Ti

Geothite, hematite, maghemite (all Fe), gibbsite (Al), lithophorite (Mn)

Sulfates - gypsum, jarosite, alunite

Carbonates – calcite, dolomite, magnesite

Chlorides - halite

Phosphates – crandalite, florencite, plumbogummite

Regolith Minerals – Fine Grained Mixtures

Most are **very fine-grained** (high surface areas)
The fine size and crystal-chemical properties impart
a dynamic nature to them

- hydrolyzable surfaces or functional groups = excellent adsorbers of elements
- flexibility in exchanging metals (cation exchange)

Why identify, quantify and understand regolith minerals?

According to a geochemist, to interpret most forms of geochemical data- three rules apply: mineralogy, mineralogy and mineralogy!

Iron oxide types and their formation conditions

Hematite Fe₂O₃

Red to reddish brown.

Favoured under **low water activity**, low Al activity, high organic matter and high temperature.

Forms due to transformation of ferrihydrite (rapid oxidation of Fe²⁺)

Goethite FeOOH

Brownish-yellow.

High water activity, high organic matter, high Al activity and low temperatures.

Forms from oxidation of Fe²⁺

Iron oxide types and their formation conditions

Maghemite

 γ -Fe₃O₄

Dark brown to black. Magnetic. Forms by the oxidation of magnetite, or dehydration of lepidocrocite or heating of Fe hydroxides with organic matter. Highly weathered regolith & forest fires

Lepidocrocite

γ-FeOOH

Orange-brown. Polymorph of goethite (different structure same composition). Forms by slow oxidation of Fe²⁺. Found in seasonally anaerobic but non-calcerous soils by slow oxidation

Magnetite

Fe₃O₄

Black. Magnetic. Inherited from parent rock or forms in reducing conditions or via magnetotactic bacteria. Submerged soils

Iron oxide formation, dissolution and transformations

Once formed, iron oxides transform via two processes

- Via dissolution and reprecipitation as another oxide
- Via structural rearrangement of another oxide where the structure reorganizes to a new one

Minerals & regolith environments pH vs Anions

The presence of specific minerals provides information on pH and type of dominant anion present in the system

Chloride	Halite		
Sulfate	Jarosite Alunite	Gypsum Bloedite	
Carbonate		Calcite	Magnesite
Silicate	Silica	Kaolin Smectite	Feldspar
	Acid	Neutral	Alkaline
		рН	

Minerals & regolith environments pH vs Eh (redox condition)

Iron oxides, iron-sulfates, iron sulfides and carbonate minerals are indicators of pH and redox (oxidizing or reducing) conditions

Sulfide weathering
Acid sulfate soils
Acid Mine Drainage
Salt Lakes
Wetlands
Constructed drains

Minerals & regolith environments Profile Drainage (& Climate)

Impeded or slow groundwater flow results in **smectite-carbonate- goethite** association

Free flow (well-drained) results in most stable assemblage -kaolinite-hematite

Need to consider climate and drainage together

 e.g. smectites may indicate aridity and/or impeded drainage Well drained, dry

Regolith Environments

Wet vs Dry

Use iron oxides as indicators

Goethite (yellow-brown)— high water activity

Hematite (red to dark red) – low water activity

This association provides **wet** vs **dry** environmental information on

- Micro fine mottles
- Profile brown mottles below red soil
- Landscape red crests versus yellow valleys
- Regional scale red areas versus yellow

Minerals & regolith environments

Drainage & Landsacpe

Local regolith environment is dictated by landscape position because landscape position controls drainage

Generally, hill crests are drier because they are well drained Valleys are wetter because poorly drained

In Situ vs Transported Kaolinite "Crystallinity"

- Kaolinite "crystallinity" or disorder
- Kaolinite Crystallinity Index (KCI) determined via reflectance spectra (ASD or HyLogger) using kaolinite doublet
- In situ = well crystalline (ordered)
- Transported = poorly crystalline

However, not always true

