REGOLITH GEOCHEMISTRY - 2 SUPERGENE GOLD

Mehrooz F Aspandiar & Charles Butt

Distribution of gold in lateritic regolith

Economic to sub-economic accumulations of Au occur in lateritic regolith in most climates

Mostly secondary Au (grains) with some primary Au grains Three main types: lateritic, saprolitic, paleochannel

Conditions for Au mobility during weathering

Metallic gold becomes mobile by becoming a complex

Au Complex	Dissolution conditions	Precipitation conditions	Product
Thiosulphate (Au(S ₂ O ₃) ₂ ³⁻	Weathering of Au & pyrite in alkaline, mildly oxidizing	Dilution Acidification Oxidation	Electrum
Organic	Neutral-acid	Reduction	Fine grained
Chloride AuCl ₂ -/ AuCl ₄ -	Acid, oxidizing, saline	Dilution, increase pH	Pure gold
Cyanide (CN) ₂ - AuCN ₂ -	Presence of cyanide – decomposing organics		Low fineness
Hydroxide AuOH(H ₂ O) ⁰	Alkaline, oxidizing	Dilution, decrease pH	High fineness

Potential Au-complexes in regolith profile – Climate related?

	Dominant complex	Likely climate	Gold character
Ferruginous	Organics – decomposed plants & animals	High precipitation- higher biomass, humid, equatorial	18804
	Cyanide – root releases		Ag poor, hexagonal or triangular habits
Saprolite	Chloride – saline groundwaters	Semi-arid to arid, low precipitation, high evaporation = saline	Ag poor, hexagonal or triangular habits
	Thiosulfate – mildly oxidizing sulfide rich	Not critical	

Wetter Climate (Humid) Gold Mobilization

Kangaba, Mali

Secondary gold in lateritic duricrust; Dendritic Au on Goethite (fine grained)

Primary gold in lateritic duricrust; Etched and pitted

Primary gold in saprolite No pitting; hardly affected; xenomorphic

Gold dispersion during lateritic weathering In humid environments

Original land surface

Lateritic duricrust

Mottled zone

Au organic
complex
destabilized –
reduced linked to
iron oxide oxidation

Fresh rock

Gold mobility in semi-arid regions

Yilgarn - BARDOC Primary Ag-rich gold at base of saprolite

Pristine, xenomorphic grains with imprints of quartz

10 µm

Corroded grain with minor secondary gold

BARDOC Saprolite, 35m depth

Aggregates of crystalline secondary gold

10 μm

BARDOC Residual primary Au grains - Lateritic residuum

Corroded and rounded with etching pits

Xenomorphic and uncorroded

Aggregates of crystals and spherules and secondary gold

BARDOC: percentage of primary, Ag-bearing grains

Mottled clay horizon

Upper saprolite

Lower saprolite

Secondary gold in saprolite

Moolart Well

Queen Lapage

Images: C Butt and Lawarence & Griffin (1994)

Mt Percy

Mt Percy Supergene Gold deposit

Supergene gold deposits South western Australia

Sediments

Two enrichment zones: lateritic and saprolitic

Gold - Calcrete

Gold – calcrete association; Secondary Au

Erosional Terrain

Calcrete and calcareous soil

Regional to prospect-scale surveys

Exploration for Supergene Gold

Mt. Gibson (semi-arid) Laterite geochemistry

Boddington (wetter climate) Laterite geochemistry

Exploration in southern Yilgarn – saline, acidic groundwaters

Au and Pathfinders: Need pathfinders as they may not be leached as much as Au

Hannan South

Exploration in southwest Yilgarn – saline, acidic groundwaters

Exploration for Au in northern Yilgarn – non-saline groundwaters

Au is strongly related to quartz veins even in saprolite— no mobilisation

Surface sampling

- Ferruginous lag with multielements
- Soil (<100m) multi-element for coarse (0.5 mm) and fine fractions
- Saprolite: Au and pathfinders throughout the profile with minimal vertical or lateral dispersion

Exploration strategies in deeper depositional terranes?

Palaeochannel gold enrichments

SW Yilgarn, Au occurs in basal sediments or saprolite immediately below the channel base

Au grains are Ag poor

Steinway paleochannel cross-section

Supergene enrichments of Au in paleodrainages

Au likely sourced from underlying shear hosted mineralisation Au grains are Ag poor and often grade cross-cuts facies boundaries

Butt (1998) Supergene Au deposits. AGSO Journal, 17(4)

Supergene Gold **Deposits**

Savanna climate Lateritization

Lateritic residuum Mottled zone # Saprolite Parent rock

Modification arid climate

YILGARN (non-saline)

(e.g. Reedy, Bronzewing)

YILGARN (saline)

(e.g. Mt Percy, Boddington)

salinity

YILGARN (hypersaline)

(e.g. Panglo, Hannan South)

Lake sediments

Summary of processes – arid terrain

Weathering

Gold mobilization

Early climate – Cretaceous to early Miocene

Warm to tropical, humid savanna; or possibly Mediterranean?

Deep weathering Physical and chemical enrichment in

laterite

Lowering of land surface Minor loss from saprolite

Lateritization Mobile as organic (& hydroxide?)

complexes

Later climate – mid-Miocene to present

Semi-arid

Lowering of water-table

and redox front

Erosion

Continued slow weathering

In south: formation of depletion zone enrichment in saprolite: chloride destruction of lateritic enrichments dispersion into surface horizons, concentration in pedogenic carbonate: biogenic/organic complex

In north: little gold mobility